
Chapter 2

Simple Python Code

In this chapter we will look at the basic elements of programming in Python.
There isn’t a lot you can do without the control structures of Chapter 3, so we
will move quickly through this material. You might want to review this after
you have read Chapters 3 and 4. Though none of this is difficult, there are some
subtleties here that you might not appreciate unil you have some programming
experience.

13

14 CHAPTER 2. SIMPLE PYTHON CODE

2.1 A first program

In this chapter we will begin to write programs using the simplest elements of
Python. There are several factors that make this a complex, and sometimes
frustrating, process. One is that programs are more formal than human com-
munication, and everything in a program needs to be correct in order for it to
run. If you are just starting to learn a new human language, such as Spanish,
you might put a verb in the wrong tense or use the wrong gender for a noun
but people will still know what you mean. Computers aren’t as good as people
at finding the essence of what you are saying. If your program isn’t completely
correct, the computer will not run it. Fortunately, many of the formal details
of programs are the same in program after program; you can use them almost
like incantations to achieve what you want.

Another factor that makes programming complicated at the start is that we
want to eventually write complex programs that do useful things. In this chapter
we are trying to lay the groundwork for a full understanding of programming,
so at times we will use techniques that are more complex than necessary for the
task immediately at hand, but that use a style that will be easy to adapt later
on.

There are four primary types of instructions in Python, and in most pro-
gramming languages: definitions, expressions, statements and comments. An
executable instruction does something. For example, the line of code x = 3 + 4
adds together the numbers 3 and 4 and stores the result in variable x. There
are two kinds of executable instructions. An expression represents a value, such
as 3+4. A statement does something, such as print x. A definition creates
something and gives it a name for later use. Nothing appears to happen when
you execute a definition, but the system’s memory is modified to include the
newly defined object. Finally, a comment is a note for human readers of the
program. Comments are ignored by the computer; their sole purpose is to help
humans understand the program. Comments in Python start with the symbol
and extend to the end of the line.

The Python system starts reading your program at the top; it reads and
executes statements until it gets to the end. Of course, all that happens when
it executes a definition is that its memory is modifed to include the new object.
Consider Program 2.1.1:

2.1. A FIRST PROGRAM 15

This a sk s f o r the u s e r ’ s name
and p r i n t s a g r e e t i n g .

def main () :
name = input (”Who a r e you ? ”)
i f name == ’ bob ’ :

print (”Bob r u l e s ! ”)
else :

print (” H e l l o , ” + name + ” ! ”)
print (” Goodbye . ”)

main ()

Program 2.1.1: Our first program

This starts with two lines of comments:

This a sk s f o r the u s e r ’ s name
and p r i n t s a g r e e t i n g .

Anyone reading the program can tell the program’s purpose from these two
lines without reading any further. The program then has a definition:

def main () :
name = input (”Who a r e you ? ”)
i f name == ’ bob ’ :

print (”Bob r u l e s ! ”)
else :

print (” H e l l o , ” + name + ” ! ”)
print (” Goodbye . ”)

main ()

This defines an object called main(). Objects like this that have parentheses
as part of their names are called functions. These are the one of the primary
building blocks of programs. Most of the programs we will write will have a
sequence of function definitions at the start. Note that there are many lines
indented underneath the line

def main () :

These lines make up the body of the function - the instructions to be executed
when the function is used. Python is different from most programing languages
in that it uses indentation as a structural part of programs. Other languages
uses braces, such as { and } or words such as begin and end to group together
statements. Python’s use of white space (space characters and tabs) makes it
very visual; many people think this makes Python programs easier to read.

The final line of Program 2.1.1 is

16 CHAPTER 2. SIMPLE PYTHON CODE

main ()

This invokes, or calls, function main() that was defined earlier. The system calls
a function by executing the statements in its body one at a time. First, we have

name = input (”Who a r e you ? ”)

This is complex. The string ”Who are you? ” is printed and the system halts
and waits for the user to type a line of text that is terminated by the Return
key. Whatever the user types is given as a string to the variable name.

The next instruction in main() is an if-statement:

i f name == b o b ’ :
p r i n t (”Bob r u l e s ! ”)

e l s e :
p r i n t (” H e l l o , ” + name + ” ! ”)

This compares the value stored in variable name to the string bob ’ . If
they match, the system prints Bob rules . If they don’t match it prints the
word Hello , followed by the value in variable name followed by an exclamation
point.

The last line of function main() just prints the word ”Goodbye.” This line is
not part of the if-statement and so it is executed regardless of what name the
user enters. Note how Python’s use of indentation helps us to understand the
functionality of the program. If we indented the last line, so that main() reads

def main () :
name = input (”Who a r e you ? ”)
i f name == ’ bob ’ :

print (”Bob r u l e s ! ”)
else :

print (” H e l l o , ” + name + ” ! ”)
print (” Goodbye . ”)

then, in the case where the user enters bob the system will only print ”Bob rules!”
and if the user enters ’Mary’ the system will respond

Hello, Mary!
Goodbye.

We run this program by opening it in a Python window inside Idle, or else
typing it into a new file in Idle. One of the menus in this window is called Run,
and there is an option in this menu called Run module F5 Either select this
option or else press the F5 key to run the program. Here is a typical run, with
what the user prints in bold and what the user types in normal font:

Who are you? Mary

Hello, Mary!
Goodbye.

2.1. A FIRST PROGRAM 17

Program 2.1.1 has a structure that we will use over and over. Until we dis-
cuss functions more completely in Chapter 5, all of our programs will have the
following form

comment on what the program does
def main () :

...
main ()

The use of main() here as the function that holds the body of the program
goes back to the C language, which required a function called ain()} to fill this role . Python doesn’t care what the nae
is; our programs would run just as well with the structure:

def s t u f f () :
...

s t u f f ()

We will use the name ”main” as a concession to tradition.
Note that Program 2.1.1 is more complex than it actually needs to be.

Python is a scripting language, which means that it can execute sequences of
statements without an encompassing program. Program 2.1.2, below, runs in
the same way as Program 2.1.1. For very short programs this can be useful, but
as soon as the programs gain a little complexity this style becomes very hard to
follow. For this reason we will stick to the style of Program 2.1.1 for all of our
subsequent programs.

This a sk s f o r the u s e r ’ s name
and p r i n t s a g r e e t i n g .

name = input (”Who a r e you ? ”)
i f name == ’ bob ’ :

print (”Bob r u l e s ! ”)
else :

print (” H e l l o , ” + name + ” ! ”)
print (” Goodbye . ”)

Program 2.1.2: Our second program

So far, programming should look easy. Programming is a great spectator
sport. It is easy to nod your head and say ”Yes, I understand.” as long as
someone else is doing the coding. When you start writing your own programs
matters become a little more complex. In the next section we will look at some

18 CHAPTER 2. SIMPLE PYTHON CODE

of the mistakes you might make, and how the system will respond to these
mistakes.

